
© 2007, UCSC

Selecting Data

Duration : 8 hrs

© 2007, UCSC

Detailed Syllabus
4.3 Selecting Data
4.3.1 Queries: SELECT Statement.

4.3.2 Single Table: all columns (*), selecting specific columns (RA project
operation), unique values (DISTINCT), Executing multiple statements (;),
WHERE clause (RA select operation), Including or excluding rows (=, !=),
Relational Operators (=, !=, >, >=, <, <=), Identifying Null values (IS NULL),
Where clause keywords (AND, OR, [NOT] BETWEEN, [NOT] IN, IS [NOT]
NULL, [NOT] LIKE, ORDER BY, Arithmetic Operators (+, -, *, /),
Expressions, Display Labels, Aggregate Functions: COUNT, SUM, AVG,
MAX, MIN, GROUP BY, HAVING.

4.3.3 Multiple Table: RA join and product operations, Natural Join, Multiple
Table Joins, Aliases for table names, Outer Join, UNION.

4.3.4 Functions: Arithmetic (ROUND, TRUNC), String (TO_CHAR, UPPER,
LOWER, Sub strings, Concatenation, TRIM), Date and Time (DAY,
MONTH, YEAR, DATE, CURRENT).

4.3.5 Sub queries: Nested Select Statement, Values returned by sub queries
(single value, a list of values), EXISTS, Correlated nested queries.

© 2007, UCSC

Referential Integrity

Parent table:
CREATE TABLE DEPARTMENT
(DEPT-NO CHAR(3),
other column definitions
PRIMARY KEY (DEPT-NO));

SQL data definition for defining referential integrity constraints

CREATE TABLE EMPLOYEE
(EMP-NO CHAR(5),
DEPT-NO CHAR(3)
other column definitions
PRIMARY KEY (EMP-NO),
FOREIGN KEY DEPT-N-FK (DEPT-NO)

REFERENCES DEPARTMENT
ON DELETE SET NULL));

Dependent table:

© 2007, UCSC

Declarative referential integrity simplifies application
programming and enables enforcement at the database
server level, eliminating the possibility of programming
errors

Defining referential integrity rules in the SQL DDL
is known as declarative referential integrity

User Defined Integrity

User defined integrity constraints can be enforced by the database
server using triggers and stored procedures.

© 2007, UCSC

Triggers and stored procedures are user written
routines which are stored and executed under the
control of the database server.

They are often coded in proprietary procedural
extensions to SQL, e.g. Sybase's Transact SQL or
Oracle's PL/SQL.

SQL for Data Manipulation
Manipulation

SQL allows a user or an application program to update
the database by adding new data, removing old data, and
modifying previously stored data.

© 2007, UCSC

Retrieval
SQL allows a user or an application program
to retrieve stored data from the database
and use it.

• Most Commonly Used Commands
– SELECT INSERT
– UPDATE DELETE

© 2007, UCSC

SQL for Data Manipulation

-It does not require knowledge of any key items

-It is uniform language for end-users and
programmers

-It operates on one or more tables based on set
theory, not on a record at a time.

-High-level Language for data manipulation

-It does not require predefined navigation path

© 2007, UCSC

Command: SELECT
Function

– Retrieves data from one or more rows. Every
SELECT statement produces a table of query
results containing one or more columns and zero
or more rows.

• FROM (table specification,)
• {WHERE (search condition)}
• {GROUP BY (group-column,)}
• {HAVING (search condition)}
• {ORDER BY (sort specification,)}

SELECT {[ALL, DISTINCT]}
[(select-item,), i]

© 2007, UCSC

SELECT E-No, E-Name
FROM Employee ;

Employee
E-No E-Name D-No

179 Silva 7
857 Perera 4
342 Dias 7

Employee Names
E-No E-Name
179 Silva
857 Perera
342 Dias

SELECT E-No, E-Name

FROM Employee
ORDER BY E-Name ;

Employee Names
E-No E-Name
342 Dias
857 Perera
179 Silva

Project Selected Columns

© 2007, UCSC

SELECT *
FROM Employee
WHERE D-No = '7' ;

Employee
E-No E-Name D-No
179 Silva 7
857 Perera 4
342 Dias 7

Sales Employee
E-No E-Name D-No
179 Silva 7
342 Dias 7

Sales Employee
E-No E-Name
179 Silva
342 Dias

SELECT E-No, E-Name

FROM Employee
WHERE D-No = '7' ;

Restrict Rows

Restrict Rows and Project Columns

© 2007, UCSC

Department
D-No D-Name M-No

4 Finance 857
7 Sales 179

Employee
E-No E-Name D-No

179 Silva 7
857 Perera 4
342 Dias 7

EquiJoin

SELECT Employee.*, Department.*
FROM Employee, Department
WHERE Employee.D-No = Department.D-No ;

Emp-Info

E-No E-Name D-No D-No D-Name M-No
179 Silva 7 7 Sales 179
857 Perera 4 4 Finance 857
342 Dias 7 7 Sales 179

SELECT E.*, D.*
FROM Employee E, Department D
WHERE E.D-No = D.D-No ;

© 2007, UCSC

Outer Joins: Left, Right, Full

SELECT E.*, D.*
FROM Employee E LEFT OUTER JOIN Department D ON E.D-No = D.D-No;

Inner Join

SELECT E.*, D.*
FROM Employee E
INNER JOIN Department D ON E.D-No = D.D-No;

© 2007, UCSC

Employee
E-No E-Name D-No
179 Silva 7
857 Perera 4
342 Dias 7

Emp-Info
E-No E-Name D-No D-No D-Name M-No

179 Silva 7 7 Sales 179
857 Perera 4 Null Null Null
342 Dias 7 7 Sales 179

D-No D-Name M-No

2 Finance 850
7 Sales 179

Department

© 2007, UCSC

Right Outer Join
SELECT E.*, D.*
FROM Employee E RIGHT OUTER JOIN Department D

ON E.D-No = D.D-No;
Full Outer Join
SELECT E.*, D.*
FROM Employee E FULL OUTER JOIN Department D

ON E.D-No = D.D-No;

Emp-Info
E-No E-Name D-No D-No D-Name M-No

Null Null Null 2 Finance 850

179 Silva 7 7 Sales 179

342 Dias 7 7 Sales 179

© 2007, UCSC

D-No D-Name M-No
4 Finance 857
7 Sales 179

Department

Employee
E-No E-Name D-No
179 Silva 7
857 Perera 4
342 Dias 7

Cartesian Product

SELECT
E.*, D.*

FROM
Employee E, Department D

Emp-Info
E-No E-Name D-No D-No D-Name M-No
179 Silva 7 4 Finance 857
857 Perera 4 4 Finance 857
342 Dias 7 4 Finance 857
179 Silva 7 7 Sales 179
857 Perera 4 7 Sales 179
342 Dias 7 7 Sales 179

© 2007, UCSC

SQL Data Retrieval

Comparison
– Equal to =
– Not equal to != or <> or ^=
– Less than to <
– Less than or equal to <=
– Greater than to >
– Greater than or equal to >=

Basic Search Conditions

© 2007, UCSC

SQL Data Retrieval

• Range ([NOT] BETWEEN)

– expres-1 [NOT] BETWEEN expres-2 AND expres- 3

– Example: WEIGHT BETWEEN 50 AND 60

Basic Search Conditions (cont’d)

• Set Membership ([NOT] IN)

– Example 1: WHERE Emp_No IN (‘E1’, ‘E2’, ‘E3’)

– Example 2: WHERE Emp_No IN (Select Emp_No
FROM Employee WHERE Dept_No=‘7’)

© 2007, UCSC

• Pattern Matching ([NOT] LIKE)
– expres-1 [NOT] LIKE {special-register | host-

variable | string-constant}
– Example: WHERE Proj_Name LIKE

“INFORM%”

• Null Value (IS [NOT] NULL)
– Example: WHERE Proj_Name IS NOT

NULL

Basic Search Conditions (cont’d) :

© 2007, UCSC

Compound Search Conditions

Example:
WHERE Proj_Name LIKE ‘INFORM%’ AND Emp_Name = ‘DIAS’

AND, OR and NOT

SQL Query Features
• Summary Queries

– Summarize data from the database. In general, summary queries use
SQL functions to collapse a column of data values into a single value
that summarizes the column. (AVG, MIN, MAX, SUM, COUNT..)

• Sub-Queries
– Use the results of one query to help define another query

© 2007, UCSC

SELECT COUNT(*)
FROM Employee

SELECT AVG(Salary)
FROM Employee

Summarising Data

Employee
E-No Job Salary D-No

179 Manager 20000 10
857 Clerk 8000 10
342 Clerk 9000 20
477 Manager 15000 30
432 Clerk 10000 30

Count(*)
5

AVG(Salary)
12400

© 2007, UCSC

A result of a previous specified clause is grouped using the group
by clause.
e.g. SELECT d-no, AVG(salary)

FROM employee
GROUP BY d-no

D-No AVG(Salary)
10 14,000
20 9,000
30 12,500

Employee
E-No Job Salary D-No

179 Manager 20000 10
857 Clerk 8000 10
342 Clerk 9000 20
477 Manager 15000 30
432 Clerk 10000 30

SELECT STATEMENT
May also contain
[GROUP BY [HAVING] ORDER BY]

GROUP BY

© 2007, UCSC

Always used with GROUP BY clause.
SELECT d-no, AVG(salary)
FORM employee
GROUP BY d-no
HAVING AVG(salary)>12000

D-No AVG(Salary)
10 14,000
30 12,500

Employee
E-No Job Salary D-No

179 Manager 20000 10
857 Clerk 8000 10
342 Clerk 9000 20
477 Manager 15000 30
432 Clerk 10000 30

[GROUP BY [HAVING] ORDER BY]

HAVING
Used for select groups that meet
specified conditions.

© 2007, UCSC

A sub query is SELECT statement that nest inside the WHERE
clause of another SELECT statement. The results are need in
solving the main query.
Get a list of all suppliers supplying part P2.

Nested Queries

SELECT sname
FROM supplier
WHERE sno IN
(SELECT sno FROM supply WHERE pno = ‘P2’);

SELECT sname
FROM supplier, supply
WHERE supplier.sno = supply.sno and pno = ‘P2’;

SELECT ename , salary
FROM employee
WHERE salary = (SELECT MIN (salary) FROM employee)

© 2007, UCSC

SELECT DISTINCT pub_name
FROM publishers
WHERE EXISTS
(SELECT * FROM title
WHERE pub_id = publishers.pub_id and type = “business”)

DISTINCT – will remove multiple occurrences

Sub queries with EXISTS
e.g. find all publishers who
publish business books

Nested Queries Contd.

